AN INTRODUCTION TO GALOIS MODULE STRUCTURE

Nigel Byott

University of Exeter

Omaha, May 2019

An extension N/K of fields of (finite) degree n = [N : K] is **Galois** if it is normal and separable.

An extension N/K of fields of (finite) degree n = [N : K] is **Galois** if it is normal and separable.

Its Galois group is

Gal(N/K) := {field automorphisms $\sigma : N \to N$ with $\sigma(k) = k \ \forall k \in K$ }.

Then Gal(N/K) is a group of order *n*.

An extension N/K of fields of (finite) degree n = [N : K] is **Galois** if it is normal and separable.

Its Galois group is

 $\operatorname{Gal}(N/K) := \{ \text{field automorphisms } \sigma : N \to N \text{ with } \sigma(k) = k \ \forall k \in K \}.$

Then Gal(N/K) is a group of order *n*.

The **Fundamental Theorem of Galois Theory** says there is a bijection between subgroups of Gal(N/K) and fields E with $K \subseteq E \subseteq N$.

An extension N/K of fields of (finite) degree n = [N : K] is **Galois** if it is normal and separable.

Its Galois group is

 $\operatorname{Gal}(N/K) := \{ \text{field automorphisms } \sigma : N \to N \text{ with } \sigma(k) = k \ \forall k \in K \}.$

Then Gal(N/K) is a group of order *n*.

The **Fundamental Theorem of Galois Theory** says there is a bijection between subgroups of Gal(N/K) and fields E with $K \subseteq E \subseteq N$.

The Nomal Basis Theorem says there is an element $\alpha \in N$ (called a normal basis generaor) such that

$$\{\sigma(\alpha): \sigma \in \operatorname{Gal}(N/K)\}$$

is a basis for N as a K-vector space.

An extension N/K of fields of (finite) degree n = [N : K] is **Galois** if it is normal and separable.

Its Galois group is

 $\operatorname{Gal}(N/K) := \{ \text{field automorphisms } \sigma : N \to N \text{ with } \sigma(k) = k \ \forall k \in K \}.$

Then Gal(N/K) is a group of order *n*.

The **Fundamental Theorem of Galois Theory** says there is a bijection between subgroups of Gal(N/K) and fields E with $K \subseteq E \subseteq N$.

The Nomal Basis Theorem says there is an element $\alpha \in N$ (called a normal basis generaor) such that

$$\{\sigma(\alpha): \sigma \in \operatorname{Gal}(N/K)\}$$

is a basis for N as a K-vector space.

Thus every $\beta \in N$ can be written in a unique way as

$$eta = \sum_{\sigma} c_{\sigma} \sigma(lpha), \qquad c_{\sigma} \in K.$$

Reinterpreting the Normal Basis Theorem Write G = Gal(N/K) and let

$$\mathcal{K}[\mathcal{G}] = \left\{ \sum_{\sigma \in \mathcal{G}} c_{\sigma} \sigma : c_{\sigma} \in \mathcal{K} \right\},$$

a K-vector space over K of dimension n.

Reinterpreting the Normal Basis Theorem Write G = Gal(N/K) and let

$$\mathcal{K}[G] = \left\{ \sum_{\sigma \in G} c_{\sigma} \sigma : c_{\sigma} \in \mathcal{K} \right\},$$

a K-vector space over K of dimension n.

Then K[G] is a ring with multiplication

$$\left(\sum_{\sigma} c_{\sigma} \sigma\right) \left(\sum_{\tau} d_{\tau} \tau\right) = \sum_{\sigma, \tau} c_{\sigma} d_{\tau} \sigma \tau = \sum_{\rho} \left(\sum_{\sigma} c_{\sigma} d_{\sigma^{-1} \rho}\right) \rho.$$

Reinterpreting the Normal Basis Theorem Write G = Gal(N/K) and let

$$\mathcal{K}[G] = \left\{ \sum_{\sigma \in G} c_{\sigma} \sigma : c_{\sigma} \in \mathcal{K} \right\},$$

a K-vector space over K of dimension n.

Then K[G] is a ring with multiplication

$$\left(\sum_{\sigma} c_{\sigma} \sigma\right) \left(\sum_{\tau} d_{\tau} \tau\right) = \sum_{\sigma, \tau} c_{\sigma} d_{\tau} \sigma \tau = \sum_{\rho} \left(\sum_{\sigma} c_{\sigma} d_{\sigma^{-1} \rho}\right) \rho.$$

We call K[G] the **group algebra** of G over K.

Reinterpreting the Normal Basis Theorem Write G = Gal(N/K) and let

$$\mathcal{K}[G] = \left\{ \sum_{\sigma \in G} c_{\sigma} \sigma : c_{\sigma} \in \mathcal{K} \right\},$$

a K-vector space over K of dimension n.

Then K[G] is a ring with multiplication

$$\left(\sum_{\sigma} c_{\sigma} \sigma\right) \left(\sum_{\tau} d_{\tau} \tau\right) = \sum_{\sigma, \tau} c_{\sigma} d_{\tau} \sigma \tau = \sum_{\rho} \left(\sum_{\sigma} c_{\sigma} d_{\sigma^{-1} \rho}\right) \rho.$$

We call K[G] the **group algebra** of G over K.

Then K[G] acts on N; for $\beta \in N$ we have

$$\left(\sum_{\sigma} c_{\sigma} \sigma\right) \cdot \beta = \sum_{\sigma} c_{\sigma} \sigma(\beta) \in \mathsf{N}.$$

Reinterpreting the Normal Basis Theorem Write G = Gal(N/K) and let

$$\mathcal{K}[G] = \left\{ \sum_{\sigma \in G} c_{\sigma} \sigma : c_{\sigma} \in \mathcal{K} \right\},$$

a K-vector space over K of dimension n.

Then K[G] is a ring with multiplication

$$\left(\sum_{\sigma} c_{\sigma} \sigma\right) \left(\sum_{\tau} d_{\tau} \tau\right) = \sum_{\sigma, \tau} c_{\sigma} d_{\tau} \sigma \tau = \sum_{\rho} \left(\sum_{\sigma} c_{\sigma} d_{\sigma^{-1} \rho}\right) \rho.$$

We call K[G] the **group algebra** of G over K.

Then K[G] acts on N; for $\beta \in N$ we have

$$\left(\sum_{\sigma} c_{\sigma} \sigma\right) \cdot \beta = \sum_{\sigma} c_{\sigma} \sigma(\beta) \in \mathsf{N}.$$

Thus N becomes a module over the ring K[G].

Nigel Byott (University of Exeter)

This means that N is a **free** K[G]-module of rank 1.

This means that N is a **free** K[G]-module of rank 1.

[Note that, unlike vector spaces over a field, modules over a ring do not always have a basis, i.e. are not always free. Thus the Normal Basis Theorem gives non-trivial information about the structure of N as a K[G]-module.]

This means that N is a **free** K[G]-module of rank 1.

[Note that, unlike vector spaces over a field, modules over a ring do not always have a basis, i.e. are not always free. Thus the Normal Basis Theorem gives non-trivial information about the structure of N as a K[G]-module.]

The main question of Galois module structure is:

Can we find an analogue of the Normal Basis Theorem at the level of integers?

Let's take $K = \mathbb{Q}$. Inside \mathbb{Q} we have the ring of integers \mathbb{Z} .

Let's take $K = \mathbb{Q}$. Inside \mathbb{Q} we have the ring of integers \mathbb{Z} .

Let N is a finite extension of \mathbb{Q} (i.e. a number field) with $[N : \mathbb{Q}] = n$.

Let's take $K = \mathbb{Q}$. Inside \mathbb{Q} we have the ring of integers \mathbb{Z} . Let N is a finite extension of \mathbb{Q} (i.e. a number field) with $[N : \mathbb{Q}] = n$. We have an analogue of \mathbb{Z} inside N:

 $O_N = \{ \alpha \in N : \alpha \text{ is the root of some monic } f(X) \in \mathbb{Z}[X] \}.$

Let's take $K = \mathbb{Q}$. Inside \mathbb{Q} we have the ring of integers \mathbb{Z} . Let N is a finite extension of \mathbb{Q} (i.e. a number field) with $[N : \mathbb{Q}] = n$. We have an analogue of \mathbb{Z} inside N:

 $O_N = \{ \alpha \in N : \alpha \text{ is the root of some monic } f(X) \in \mathbb{Z}[X] \}.$

 O_N is a ring, it contains \mathbb{Z} , and it has a basis over \mathbb{Z} of size n.

Let's take $K = \mathbb{Q}$. Inside \mathbb{Q} we have the ring of integers \mathbb{Z} . Let N is a finite extension of \mathbb{Q} (i.e. a number field) with $[N : \mathbb{Q}] = n$. We have an analogue of \mathbb{Z} inside N:

 $O_N = \{ \alpha \in N : \alpha \text{ is the root of some monic } f(X) \in \mathbb{Z}[X] \}.$

 O_N is a ring, it contains \mathbb{Z} , and it has a basis over \mathbb{Z} of size *n*. We call O_N the **ring of algebraic integers** of *N*.

Let $N = \mathbb{Q}(\sqrt{d})$ with d a squarefree integer.

Let $N = \mathbb{Q}(\sqrt{d})$ with d a squarefree integer.

Any element $\alpha = u + v\sqrt{d}$ of N with $u, v \in \mathbb{Z}$ will be an algebraic integer: it is a root of

$$\left(X-(u+v\sqrt{d})\right)\left(X-(u-v\sqrt{d})\right)=X^2-2uX+(u^2+v^2d)\in\mathbb{Z}[X].$$

Let $N = \mathbb{Q}(\sqrt{d})$ with d a squarefree integer.

Any element $\alpha = u + v\sqrt{d}$ of N with $u, v \in \mathbb{Z}$ will be an algebraic integer: it is a root of

$$\left(X-(u+v\sqrt{d})\right)\left(X-(u-v\sqrt{d})\right)=X^2-2uX+(u^2+v^2d)\in\mathbb{Z}[X].$$

However, these might not be all the algebraic integers:

Let $N = \mathbb{Q}(\sqrt{d})$ with d a squarefree integer.

Any element $\alpha = u + v\sqrt{d}$ of N with $u, v \in \mathbb{Z}$ will be an algebraic integer: it is a root of

$$\left(X-(u+v\sqrt{d})
ight)\left(X-(u-v\sqrt{d})
ight)=X^2-2uX+(u^2+v^2d)\in\mathbb{Z}[X].$$

However, these might not be all the algebraic integers:

$$\alpha = \frac{1}{2}(1 + \sqrt{d}) \text{ is a root of}$$

$$\left(X - \frac{1}{2}(1 + \sqrt{d})\right) \left(X - \frac{1}{2}(1 - \sqrt{d})\right) - X^2 - X + \frac{1}{2}(1 - d)$$

$$\left(X - \frac{1}{2}(1 + \sqrt{d})\right)\left(X - \frac{1}{2}(1 - \sqrt{d})\right) = X^2 - X + \frac{1}{4}(1 - d)$$

SO

$$\alpha \in O_N \Leftrightarrow d \equiv 1 \pmod{4}.$$

Let d be a squarefree integer and $N = \mathbb{Q}(\sqrt{d})$. Then

$$O_N = \begin{cases} \mathbb{Z}[\sqrt{d}] = \{u + v\sqrt{d} : u, v \in \mathbb{Z}\} & \text{if } d \equiv 2,3 \pmod{4}; \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] = \left\{u + v\left(\frac{1+\sqrt{d}}{2}\right) : u, v \in \mathbb{Z}\right\} & \text{if } d \equiv 1 \pmod{4}. \end{cases}$$

Let d be a squarefree integer and $N = \mathbb{Q}(\sqrt{d})$. Then

$$O_N = \begin{cases} \mathbb{Z}[\sqrt{d}] = \{u + v\sqrt{d} : u, v \in \mathbb{Z}\} & \text{if } d \equiv 2,3 \pmod{4}; \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] = \left\{u + v\left(\frac{1+\sqrt{d}}{2}\right) : u, v \in \mathbb{Z}\right\} & \text{if } d \equiv 1 \pmod{4}. \end{cases}$$

Notice that $\operatorname{Tr}_{N/\mathbb{Q}}(O_N) = \begin{cases} 2\mathbb{Z} & \text{ if } d \equiv 2,3 \pmod{4}, \\ \mathbb{Z} & \text{ if } d \equiv 1 \pmod{4}. \end{cases}$

Let d be a squarefree integer and $N = \mathbb{Q}(\sqrt{d})$. Then

$$O_N = \begin{cases} \mathbb{Z}[\sqrt{d}] = \{u + v\sqrt{d} : u, v \in \mathbb{Z}\} & \text{if } d \equiv 2,3 \pmod{4}; \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] = \left\{u + v\left(\frac{1+\sqrt{d}}{2}\right) : u, v \in \mathbb{Z}\right\} & \text{if } d \equiv 1 \pmod{4}. \end{cases}$$

Notice that
$$\operatorname{Tr}_{N/\mathbb{Q}}(\mathcal{O}_N) = egin{cases} 2\mathbb{Z} & ext{ if } d \equiv 2,3 \pmod{4}, \\ \mathbb{Z} & ext{ if } d \equiv 1 \pmod{4}. \end{cases}$$

Example (Cyclotomic Fields)

Let $N = \mathbb{Q}(\zeta_m)$ with $\zeta_m = e^{2\pi i/m}$, a primitive nth root of unity. Then $O_N = \mathbb{Z}[\zeta_m]$.

Let d be a squarefree integer and $N = \mathbb{Q}(\sqrt{d})$. Then

$$O_N = \begin{cases} \mathbb{Z}[\sqrt{d}] = \{u + v\sqrt{d} : u, v \in \mathbb{Z}\} & \text{if } d \equiv 2,3 \pmod{4}; \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] = \left\{u + v\left(\frac{1+\sqrt{d}}{2}\right) : u, v \in \mathbb{Z}\right\} & \text{if } d \equiv 1 \pmod{4}. \end{cases}$$

Notice that
$$\operatorname{Tr}_{N/\mathbb{Q}}(O_N) = \begin{cases} 2\mathbb{Z} & \text{ if } d \equiv 2,3 \pmod{4}, \\ \mathbb{Z} & \text{ if } d \equiv 1 \pmod{4}. \end{cases}$$

Example (Cyclotomic Fields)

Let $N = \mathbb{Q}(\zeta_m)$ with $\zeta_m = e^{2\pi i/m}$, a primitive nth root of unity. Then $O_N = \mathbb{Z}[\zeta_m]$.

We can now ask the question:

Let d be a squarefree integer and $N = \mathbb{Q}(\sqrt{d})$. Then

$$O_N = \begin{cases} \mathbb{Z}[\sqrt{d}] = \{u + v\sqrt{d} : u, v \in \mathbb{Z}\} & \text{if } d \equiv 2,3 \pmod{4}; \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] = \left\{u + v\left(\frac{1+\sqrt{d}}{2}\right) : u, v \in \mathbb{Z}\right\} & \text{if } d \equiv 1 \pmod{4}. \end{cases}$$

Notice that
$$\operatorname{Tr}_{N/\mathbb{Q}}(O_N) = \begin{cases} 2\mathbb{Z} & \text{ if } d \equiv 2,3 \pmod{4}, \\ \mathbb{Z} & \text{ if } d \equiv 1 \pmod{4}. \end{cases}$$

Example (Cyclotomic Fields)

Let $N = \mathbb{Q}(\zeta_m)$ with $\zeta_m = e^{2\pi i/m}$, a primitive nth root of unity. Then $O_N = \mathbb{Z}[\zeta_m]$.

We can now ask the question:

If N/\mathbb{Q} is a Galois extension, does it have a **normal integral basis**, i.e. does there exist $\alpha \in O_N$ such that each $\beta \in O_N$ can be written uniquely as $\beta = \lambda \cdot \alpha$ for some λ in the **integral group ring** $\mathbb{Z}[G]$?

Nigel Byott (University of Exeter)

Galois Module Structure

If $N = \mathbb{Q}(\sqrt{d})$ with $d \equiv 1 \pmod{4}$, the answer is **Yes**.

If $N = \mathbb{Q}(\sqrt{d})$ with $d \equiv 1 \pmod{4}$, the answer is **Yes**. Take $\alpha = \frac{1}{2}(1 + \sqrt{d})$. Here $G = \{id, \sigma\}$ with $\sigma(\sqrt{d}) = -\sqrt{d}$.

$$\forall a, b \in \mathbb{Z}: \quad a+b\left(\frac{1+\sqrt{d}}{2}\right) = (a+b+a\sigma)\cdot\left(\frac{1+\sqrt{d}}{2}\right).$$

If $N = \mathbb{Q}(\sqrt{d})$ with $d \equiv 1 \pmod{4}$, the answer is **Yes**. Take $\alpha = \frac{1}{2}(1 + \sqrt{d})$. Here $G = \{\mathrm{id}, \sigma\}$ with $\sigma(\sqrt{d}) = -\sqrt{d}$. $\forall a, b \in \mathbb{Z}$: $a + b\left(\frac{1 + \sqrt{d}}{2}\right) = (a + b + a\sigma) \cdot \left(\frac{1 + \sqrt{d}}{2}\right)$.

However, if $d \equiv 2,3 \pmod{4}$, the answer is **No**.

If $N = \mathbb{Q}(\sqrt{d})$ with $d \equiv 1 \pmod{4}$, the answer is **Yes**. Take $\alpha = \frac{1}{2}(1 + \sqrt{d})$. Here $G = \{\mathrm{id}, \sigma\}$ with $\sigma(\sqrt{d}) = -\sqrt{d}$. $\forall a, b \in \mathbb{Z}$: $a + b\left(\frac{1 + \sqrt{d}}{2}\right) = (a + b + a\sigma) \cdot \left(\frac{1 + \sqrt{d}}{2}\right)$.

However, if $d \equiv 2,3 \pmod{4}$, the answer is **No**.

If we have α with $\mathbb{Z}[G] \cdot \alpha = O_N$, then

$$(1+\sigma)\cdot\alpha = \operatorname{Tr}_{N/\mathbb{Q}}(\alpha) = \pm 1,$$

but we have seen that $\operatorname{Tr}_{N/\mathbb{Q}}(O_N) = 2\mathbb{Z}$.

If $N = \mathbb{Q}(\sqrt{d})$ with $d \equiv 1 \pmod{4}$, the answer is **Yes**. Take $\alpha = \frac{1}{2}(1 + \sqrt{d})$. Here $G = \{\mathrm{id}, \sigma\}$ with $\sigma(\sqrt{d}) = -\sqrt{d}$. $\forall a, b \in \mathbb{Z}$: $a + b\left(\frac{1 + \sqrt{d}}{2}\right) = (a + b + a\sigma) \cdot \left(\frac{1 + \sqrt{d}}{2}\right)$.

However, if $d \equiv 2,3 \pmod{4}$, the answer is **No**.

If we have α with $\mathbb{Z}[G] \cdot \alpha = O_N$, then

$$(1+\sigma) \cdot \alpha = \operatorname{Tr}_{N/\mathbb{Q}}(\alpha) = \pm 1,$$

but we have seen that $\operatorname{Tr}_{N/\mathbb{Q}}(O_N) = 2\mathbb{Z}$.

Example (Cyclotomic fields with prime conductor) If $N = \mathbb{Q}(\zeta_p)$ with p prime, then $G = \{\sigma_1, \sigma_2, \dots, \sigma_{p-1}\} \cong \mathbb{F}_p^{\times}$, where $\sigma_a(\zeta_p) = \zeta_p^a$, and we have $O_N = \mathbb{Z}[G] \cdot \zeta_p$.

Nigel Byott (University of Exeter)

Tame and wild extensions

We call an extension N/K of number fields **tame** if $\operatorname{Tr}_{N/K}(O_N) = O_K$; otherwise it is **wild**.

Tame and wild extensions

We call an extension N/K of number fields **tame** if $\operatorname{Tr}_{N/K}(O_N) = O_K$; otherwise it is **wild**.

As in our quadratic example, if N/K is a wild Galois extension then there cannot be a normal integral basis for N/K.
We call an extension N/K of number fields **tame** if $\operatorname{Tr}_{N/K}(O_N) = O_K$; otherwise it is **wild**.

As in our quadratic example, if N/K is a wild Galois extension then there cannot be a normal integral basis for N/K.

So the tame/wild distinction is fundamental for Galois module structure.

We call an extension N/K of number fields **tame** if $\operatorname{Tr}_{N/K}(O_N) = O_K$; otherwise it is **wild**.

As in our quadratic example, if N/K is a wild Galois extension then there cannot be a normal integral basis for N/K.

So the tame/wild distinction is fundamental for Galois module structure.

The first general result of integral Galois module structure was:

We call an extension N/K of number fields **tame** if $\operatorname{Tr}_{N/K}(O_N) = O_K$; otherwise it is **wild**.

As in our quadratic example, if N/K is a wild Galois extension then there cannot be a normal integral basis for N/K.

So the tame/wild distinction is fundamental for Galois module structure.

The first general result of integral Galois module structure was:

Theorem (Hilbert 1897; Speiser 1916)

If N is a tame Galois extension of \mathbb{Q} whose Galois group is abelian, then N/\mathbb{Q} does have a normal integral basis.

We call an extension N/K of number fields **tame** if $\operatorname{Tr}_{N/K}(O_N) = O_K$; otherwise it is **wild**.

As in our quadratic example, if N/K is a wild Galois extension then there cannot be a normal integral basis for N/K.

So the tame/wild distinction is fundamental for Galois module structure.

The first general result of integral Galois module structure was:

Theorem (Hilbert 1897; Speiser 1916)

If N is a tame Galois extension of \mathbb{Q} whose Galois group is abelian, then N/\mathbb{Q} does have a normal integral basis.

The key idea is that $N \subseteq \mathbb{Q}(\zeta_m)$ for some squarefree m.

If N/\mathbb{Q} is a wild abelian extension, then O_N cannot be a free $\mathbb{Z}[G]$ -module.

Wild abelian extensions of $\ensuremath{\mathbb{Q}}$

If N/\mathbb{Q} is a wild abelian extension, then O_N cannot be a free $\mathbb{Z}[G]$ -module.

But we could try replacing $\mathbb{Z}[G]$ with a bigger ring.

If N/\mathbb{Q} is a wild abelian extension, then O_N cannot be a free $\mathbb{Z}[G]$ -module.

But we could try replacing $\mathbb{Z}[G]$ with a bigger ring.

The **associated order** of O_N is

$$\mathcal{A}(N/\mathbb{Q}) = \{\lambda \in \mathbb{Q}[G] : \lambda \cdot O_N \subseteq O_N\}.$$

If N/\mathbb{Q} is a wild abelian extension, then O_N cannot be a free $\mathbb{Z}[G]$ -module.

But we could try replacing $\mathbb{Z}[G]$ with a bigger ring.

The **associated order** of O_N is

$$\mathcal{A}(N/\mathbb{Q}) = \{\lambda \in \mathbb{Q}[G] : \lambda \cdot O_N \subseteq O_N\}.$$

Then $\mathcal{A}(N/\mathbb{Q})$ is a subring of $\mathbb{Q}[G]$ containing $\mathbb{Z}[G]$, and O_N is an $\mathcal{A}(N/\mathbb{Q})$ -module.

If N/\mathbb{Q} is a wild abelian extension, then O_N cannot be a free $\mathbb{Z}[G]$ -module.

But we could try replacing $\mathbb{Z}[G]$ with a bigger ring.

The **associated order** of O_N is

$$\mathcal{A}(N/\mathbb{Q}) = \{\lambda \in \mathbb{Q}[G] : \lambda \cdot O_N \subseteq O_N\}.$$

Then $\mathcal{A}(N/\mathbb{Q})$ is a subring of $\mathbb{Q}[G]$ containing $\mathbb{Z}[G]$, and O_N is an $\mathcal{A}(N/\mathbb{Q})$ -module. Also

$$\mathcal{A}(N/\mathbb{Q}) = \mathbb{Z}[G] \Leftrightarrow N/\mathbb{Q}$$
 is tame.

If N/\mathbb{Q} is a wild abelian extension, then O_N cannot be a free $\mathbb{Z}[G]$ -module.

But we could try replacing $\mathbb{Z}[G]$ with a bigger ring.

The **associated order** of O_N is

$$\mathcal{A}(N/\mathbb{Q}) = \{\lambda \in \mathbb{Q}[G] : \lambda \cdot O_N \subseteq O_N\}.$$

Then $\mathcal{A}(N/\mathbb{Q})$ is a subring of $\mathbb{Q}[G]$ containing $\mathbb{Z}[G]$, and O_N is an $\mathcal{A}(N/\mathbb{Q})$ -module. Also

$$\mathcal{A}(N/\mathbb{Q}) = \mathbb{Z}[G] \Leftrightarrow N/\mathbb{Q}$$
 is tame.

Theorem (Leopoldt, 1959)

If N is a wild Galois extension of \mathbb{Q} whose Galois group is abelian, then O_N is a free module over $\mathcal{A}(N/\mathbb{Q})$.

If N/\mathbb{Q} is a wild abelian extension, then O_N cannot be a free $\mathbb{Z}[G]$ -module.

But we could try replacing $\mathbb{Z}[G]$ with a bigger ring.

The **associated order** of O_N is

$$\mathcal{A}(N/\mathbb{Q}) = \{\lambda \in \mathbb{Q}[G] : \lambda \cdot O_N \subseteq O_N\}.$$

Then $\mathcal{A}(N/\mathbb{Q})$ is a subring of $\mathbb{Q}[G]$ containing $\mathbb{Z}[G]$, and O_N is an $\mathcal{A}(N/\mathbb{Q})$ -module. Also

$$\mathcal{A}(N/\mathbb{Q}) = \mathbb{Z}[G] \Leftrightarrow N/\mathbb{Q}$$
 is tame.

Theorem (Leopoldt, 1959)

If N is a wild Galois extension of \mathbb{Q} whose Galois group is abelian, then O_N is a free module over $\mathcal{A}(N/\mathbb{Q})$.

The key idea is that $N \subseteq \mathbb{Q}(\zeta_m)$ for some m.

If $N = \mathbb{Q}(\sqrt{d})$ with $d \equiv 2,3 \pmod{4}$ then

$$\mathcal{A}(N/\mathbb{Q}) = \mathbb{Z} \cdot \left(\frac{1+\sigma}{2}\right) + \mathbb{Z} \cdot \left(\frac{1-\sigma}{2}\right)$$

If $N = \mathbb{Q}(\sqrt{d})$ with $d \equiv 2,3 \pmod{4}$ then

$$\mathcal{A}(N/\mathbb{Q}) = \mathbb{Z} \cdot \left(\frac{1+\sigma}{2}\right) + \mathbb{Z} \cdot \left(\frac{1-\sigma}{2}\right).$$

This is the maximal order in $\mathbb{Q}[C_2]$. We have

$$O_N = \mathcal{A}(N/\mathbb{Q}) \cdot (1 + \sqrt{d}).$$

If $N = \mathbb{Q}(\sqrt{d})$ with $d \equiv 2,3 \pmod{4}$ then

$$\mathcal{A}(N/\mathbb{Q}) = \mathbb{Z} \cdot \left(\frac{1+\sigma}{2}\right) + \mathbb{Z} \cdot \left(\frac{1-\sigma}{2}\right).$$

This is the maximal order in $\mathbb{Q}[C_2]$. We have

$$O_N = \mathcal{A}(N/\mathbb{Q}) \cdot (1 + \sqrt{d}).$$

The Hilbert-Speiser Theorem and Leopoldt's Theorem mean we have a good understanding of Galois module structure for abelian extensions of \mathbb{Q} .

If $N = \mathbb{Q}(\sqrt{d})$ with $d \equiv 2,3 \pmod{4}$ then

$$\mathcal{A}(N/\mathbb{Q}) = \mathbb{Z} \cdot \left(\frac{1+\sigma}{2}\right) + \mathbb{Z} \cdot \left(\frac{1-\sigma}{2}\right).$$

This is the maximal order in $\mathbb{Q}[C_2]$. We have

$$O_N = \mathcal{A}(N/\mathbb{Q}) \cdot (1 + \sqrt{d}).$$

The Hilbert-Speiser Theorem and Leopoldt's Theorem mean we have a good understanding of Galois module structure for abelian extensions of \mathbb{Q} .

We would like to generalise in two directions:

If $N = \mathbb{Q}(\sqrt{d})$ with $d \equiv 2,3 \pmod{4}$ then

$$\mathcal{A}(N/\mathbb{Q}) = \mathbb{Z} \cdot \left(\frac{1+\sigma}{2}\right) + \mathbb{Z} \cdot \left(\frac{1-\sigma}{2}\right).$$

This is the maximal order in $\mathbb{Q}[C_2]$. We have

$$O_N = \mathcal{A}(N/\mathbb{Q}) \cdot (1 + \sqrt{d}).$$

The Hilbert-Speiser Theorem and Leopoldt's Theorem mean we have a good understanding of Galois module structure for abelian extensions of \mathbb{Q} .

We would like to generalise in two directions:

• non-abelian Galois groups;

If $N = \mathbb{Q}(\sqrt{d})$ with $d \equiv 2,3 \pmod{4}$ then

$$\mathcal{A}(N/\mathbb{Q}) = \mathbb{Z} \cdot \left(\frac{1+\sigma}{2}\right) + \mathbb{Z} \cdot \left(\frac{1-\sigma}{2}\right).$$

This is the maximal order in $\mathbb{Q}[C_2]$. We have

$$O_N = \mathcal{A}(N/\mathbb{Q}) \cdot (1 + \sqrt{d}).$$

The Hilbert-Speiser Theorem and Leopoldt's Theorem mean we have a good understanding of Galois module structure for abelian extensions of \mathbb{Q} .

We would like to generalise in two directions:

- non-abelian Galois groups;
- base fields K ⊃ Q;

If $N = \mathbb{Q}(\sqrt{d})$ with $d \equiv 2,3 \pmod{4}$ then

$$\mathcal{A}(N/\mathbb{Q}) = \mathbb{Z} \cdot \left(\frac{1+\sigma}{2}\right) + \mathbb{Z} \cdot \left(\frac{1-\sigma}{2}\right).$$

This is the maximal order in $\mathbb{Q}[C_2]$. We have

$$O_N = \mathcal{A}(N/\mathbb{Q}) \cdot (1 + \sqrt{d}).$$

The Hilbert-Speiser Theorem and Leopoldt's Theorem mean we have a good understanding of Galois module structure for abelian extensions of \mathbb{Q} .

We would like to generalise in two directions:

- non-abelian Galois groups;
- base fields $K \supset \mathbb{Q}$;

(both for tame and wild extensions).

For tame Galois extensions N/\mathbb{Q} with $\operatorname{Gal}(N/\mathbb{Q}) \cong Q_8$ (the quaternion group of order 8), calculations of Martinet (1971) showed that there is a normal integral basis in some cases, but not in others.

For tame Galois extensions N/\mathbb{Q} with $\operatorname{Gal}(N/\mathbb{Q}) \cong Q_8$ (the quaternion group of order 8), calculations of Martinet (1971) showed that there is a normal integral basis in some cases, but not in others.

So being tame does not guarantee the existence of a normal integral basis.

For tame Galois extensions N/\mathbb{Q} with $\operatorname{Gal}(N/\mathbb{Q}) \cong Q_8$ (the quaternion group of order 8), calculations of Martinet (1971) showed that there is a normal integral basis in some cases, but not in others.

So being tame does not guarantee the existence of a normal integral basis.

Question: What determines which tame Q_8 -extensions do have a normal integral basis?

Attached to a finite group G are certain functions $\chi: G \to \mathbb{C}$ called **irreducible characters.** Some of these may be **symplectic**.

Attached to a finite group G are certain functions $\chi : G \to \mathbb{C}$ called **irreducible characters.** Some of these may be **symplectic**.

There are no irreducible symplectic characters if G is abelian or |G| is odd.

Attached to a finite group G are certain functions $\chi : G \to \mathbb{C}$ called **irreducible characters.** Some of these may be **symplectic**.

There are no irreducible symplectic characters if G is abelian or |G| is odd.

The group Q_8 has just one irreducible symplectic character.

Attached to a finite group G are certain functions $\chi : G \to \mathbb{C}$ called **irreducible characters.** Some of these may be **symplectic**.

There are no irreducible symplectic characters if G is abelian or |G| is odd.

The group Q_8 has just one irreducible symplectic character.

If N/K is a Galois extension of number fields with Galois group G, then for each irreducible character χ of G there is a complex function $L(s, N/K, \chi)$ called the Artin *L*-function.

$$L(s, \mathbb{Q}/\mathbb{Q}, \chi_0) = \sum_{n \ge 1} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}},$$

where $n^s = e^{s \log(n)}$ for $s \in \mathbb{C}$.

$$L(s, \mathbb{Q}/\mathbb{Q}, \chi_0) = \sum_{n \ge 1} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}},$$

where $n^s = e^{s \log(n)}$ for $s \in \mathbb{C}$.

This is the famous **Riemann Zeta Function** $\zeta(s)$.

$$L(s, \mathbb{Q}/\mathbb{Q}, \chi_0) = \sum_{n \ge 1} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}},$$

where $n^s = e^{s \log(n)}$ for $s \in \mathbb{C}$.

This is the famous **Riemann Zeta Function** $\zeta(s)$.

The series (and the product) converge for $\operatorname{Re}(s) > 1$.

$$L(s, \mathbb{Q}/\mathbb{Q}, \chi_0) = \sum_{n \ge 1} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}},$$

where $n^s = e^{s \log(n)}$ for $s \in \mathbb{C}$.

This is the famous **Riemann Zeta Function** $\zeta(s)$.

The series (and the product) converge for $\operatorname{Re}(s) > 1$.

However, $\zeta(s)$ is defined for all $s \in \mathbb{C}$ (except for a pole at s = 1) by analytic continuation, and it has a functional equation relating $\zeta(s)$ to $\zeta(1-s)$.

$$L(s, \mathbb{Q}/\mathbb{Q}, \chi_0) = \sum_{n \ge 1} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}},$$

where $n^s = e^{s \log(n)}$ for $s \in \mathbb{C}$.

This is the famous **Riemann Zeta Function** $\zeta(s)$.

The series (and the product) converge for $\operatorname{Re}(s) > 1$.

However, $\zeta(s)$ is defined for all $s \in \mathbb{C}$ (except for a pole at s = 1) by analytic continuation, and it has a functional equation relating $\zeta(s)$ to $\zeta(1-s)$.

In general, each Artin *L*-function $L(s, N/K, \chi)$ is a meromorphic function on the whole of \mathbb{C} , and has a functional equation.

$$L(s, \mathbb{Q}/\mathbb{Q}, \chi_0) = \sum_{n \ge 1} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}},$$

where $n^s = e^{s \log(n)}$ for $s \in \mathbb{C}$.

This is the famous **Riemann Zeta Function** $\zeta(s)$.

The series (and the product) converge for $\operatorname{Re}(s) > 1$.

However, $\zeta(s)$ is defined for all $s \in \mathbb{C}$ (except for a pole at s = 1) by analytic continuation, and it has a functional equation relating $\zeta(s)$ to $\zeta(1-s)$.

In general, each Artin *L*-function $L(s, N/K, \chi)$ is a meromorphic function on the whole of \mathbb{C} , and has a functional equation.

The functional equation for $L(s, N/K, \chi)$ involves a number $W(N/K, \chi)$ called the root number.

$$L(s, \mathbb{Q}/\mathbb{Q}, \chi_0) = \sum_{n \ge 1} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}},$$

where $n^s = e^{s \log(n)}$ for $s \in \mathbb{C}$.

This is the famous **Riemann Zeta Function** $\zeta(s)$.

The series (and the product) converge for $\operatorname{Re}(s) > 1$.

However, $\zeta(s)$ is defined for all $s \in \mathbb{C}$ (except for a pole at s = 1) by analytic continuation, and it has a functional equation relating $\zeta(s)$ to $\zeta(1-s)$.

In general, each Artin *L*-function $L(s, N/K, \chi)$ is a meromorphic function on the whole of \mathbb{C} , and has a functional equation.

The functional equation for $L(s, N/K, \chi)$ involves a number $W(N/K, \chi)$ called the root number.

If χ is an irreducible symplectic character then $W(N/K, \chi) = \pm 1$.

Back to quaternion extensions:

Back to quaternion extensions:

Theorem (Conjectured Serre 1971; proved Fröhlich, 1972)

Let N/\mathbb{Q} be a tame Galois extension with Galois group Q_8 , and let χ be the irreducible symplectic character of Q_8 . Then

 O_N is free over $\mathbb{Z}[Q_8] \Leftrightarrow W(N/\mathbb{Q}, \chi) = +1$.

Back to quaternion extensions:

Theorem (Conjectured Serre 1971; proved Fröhlich, 1972)

Let N/\mathbb{Q} be a tame Galois extension with Galois group Q_8 , and let χ be the irreducible symplectic character of Q_8 . Then

 O_N is free over $\mathbb{Z}[Q_8] \Leftrightarrow W(N/\mathbb{Q}, \chi) = +1$.

This shows an unexpected connection between algebraic information (whether N has a normal integral basis) and anayltic information (root numbers of L-functions).
Back to quaternion extensions:

Theorem (Conjectured Serre 1971; proved Fröhlich, 1972)

Let N/\mathbb{Q} be a tame Galois extension with Galois group Q_8 , and let χ be the irreducible symplectic character of Q_8 . Then

 O_N is free over $\mathbb{Z}[Q_8] \Leftrightarrow W(N/\mathbb{Q}, \chi) = +1$.

This shows an unexpected connection between algebraic information (whether N has a normal integral basis) and anayltic information (root numbers of L-functions).

To fit this into a general theory, we need to understand the significance of tameness.

For each prime number p, we define the **localisation** of \mathbb{Z} at p:

$$\mathbb{Z}_{(p)} = \left\{ egin{array}{cc} \mathsf{a} & \ \mathsf{b} \in \mathbb{Z}, \quad p
mid b
ight\}.$$

For each prime number p, we define the **localisation** of \mathbb{Z} at p:

$$\mathbb{Z}_{(p)} = \left\{ egin{array}{cc} \mathsf{a} & \ \mathsf{b} \in \mathbb{Z}, \quad p
mid b
ight\}.$$

Then $\mathbb{Z}_{(p)}$ is a **local ring**, i.e. a ring with only one maximal ideal, namely $p\mathbb{Z}_{(p)}$. The field of fractions of $\mathbb{Z}_{(p)}$ is \mathbb{Q} .

For each prime number p, we define the **localisation** of \mathbb{Z} at p:

$$\mathbb{Z}_{(p)} = \left\{ egin{array}{cc} a \ b \end{array} : \quad a,b \in \mathbb{Z}, \quad p
mid b
ight\}.$$

Then $\mathbb{Z}_{(p)}$ is a **local ring**, i.e. a ring with only one maximal ideal, namely $p\mathbb{Z}_{(p)}$. The field of fractions of $\mathbb{Z}_{(p)}$ is \mathbb{Q} .

The only prime number in \mathbb{Z} which "survives" in $\mathbb{Z}_{(p)}$ is p itself; all other primes become units in $\mathbb{Z}_{(p)}$.

For each prime number p, we define the **localisation** of \mathbb{Z} at p:

$$\mathbb{Z}_{(p)} = \left\{ egin{array}{cc} a \ b \end{array} : \quad a,b \in \mathbb{Z}, \quad p
mid b
ight\}.$$

Then $\mathbb{Z}_{(p)}$ is a **local ring**, i.e. a ring with only one maximal ideal, namely $p\mathbb{Z}_{(p)}$. The field of fractions of $\mathbb{Z}_{(p)}$ is \mathbb{Q} .

The only prime number in \mathbb{Z} which "survives" in $\mathbb{Z}_{(p)}$ is p itself; all other primes become units in $\mathbb{Z}_{(p)}$.

(We could also take completions and work with the *p*-adic integers \mathbb{Z}_p instead of $\mathbb{Z}_{(p)}$. The field of fractions of \mathbb{Z}_p is the the field \mathbb{Q}_p of *p*-adic numbers.)

Then

 L/\mathbb{Q} is tame $\Leftrightarrow O_{N,(p)}$ is a free $\mathbb{Z}_{(p)}[G]$ -module for each prime p.

We then say O_N is a **locally free** $\mathbb{Z}[G]$ -module.

Then

 L/\mathbb{Q} is tame $\Leftrightarrow O_{N,(p)}$ is a free $\mathbb{Z}_{(p)}[G]$ -module for each prime p.

We then say O_N is a **locally free** $\mathbb{Z}[G]$ -module.

So N/\mathbb{Q} has a normal integral basis if and only if the locally free $\mathbb{Z}[G]$ -module O_N is free.

Then

 L/\mathbb{Q} is tame $\Leftrightarrow O_{N,(p)}$ is a free $\mathbb{Z}_{(p)}[G]$ -module for each prime p.

We then say O_N is a **locally free** $\mathbb{Z}[G]$ -module.

So N/\mathbb{Q} has a normal integral basis if and only if the locally free $\mathbb{Z}[G]$ -module O_N is free.

Fröhlich constructed a finite abelian group $\operatorname{Cl}(\mathbb{Z}[G])$ which classifies locally free $\mathbb{Z}[G]$ -modules (up to stable isomorphism).

Then

 L/\mathbb{Q} is tame $\Leftrightarrow O_{N,(p)}$ is a free $\mathbb{Z}_{(p)}[G]$ -module for each prime p.

We then say O_N is a **locally free** $\mathbb{Z}[G]$ -module.

So N/\mathbb{Q} has a normal integral basis if and only if the locally free $\mathbb{Z}[G]$ -module O_N is free.

Fröhlich constructed a finite abelian group $\operatorname{Cl}(\mathbb{Z}[G])$ which classifies locally free $\mathbb{Z}[G]$ -modules (up to stable isomorphism).

We now consider tame Galois extensions N/K (with base field $K \supseteq \mathbb{Q}$), and consider O_N as a locally free $\mathbb{Z}[G]$ -module of rank $[K : \mathbb{Q}]$.

The main theorem of tame Galois module structure

Theorem (Taylor, 1981)

For a tame Galois extension N/K of number fields, the class of O_N in $Cl(\mathbb{Z}[G])$ is determined by the $W(N/K, \chi)$ for the irreducible symplectic characters χ of G. In particular, if G has no such characters, then O_N is a free $\mathbb{Z}[G]$ -module.

What can we say about O_N as an $O_K[G]$ -module (instead of $\mathbb{Z}[G]$ -module)?

What can we say about O_N as an $O_K[G]$ -module (instead of $\mathbb{Z}[G]$ -module)?

It is locally free of rank 1, and determines a class in the locally free classgroup $Cl(O_K[G])$.

What can we say about O_N as an $O_K[G]$ -module (instead of $\mathbb{Z}[G]$ -module)?

It is locally free of rank 1, and determines a class in the locally free classgroup $Cl(O_K[G])$.

In general, this class is not determined by analytic invariants. Instead, we can ask which classes in $Cl(O_K[G])$ are obtained as N varies over all tame G-extensions of K. This gives the set of **realisable classes** $\mathcal{R}(O_K[G])$.

What can we say about O_N as an $O_K[G]$ -module (instead of $\mathbb{Z}[G]$ -module)?

It is locally free of rank 1, and determines a class in the locally free classgroup $Cl(O_K[G])$.

In general, this class is not determined by analytic invariants. Instead, we can ask which classes in $\operatorname{Cl}(O_K[G])$ are obtained as N varies over all tame G-extensions of K. This gives the set of **realisable classes** $\mathcal{R}(O_K[G])$.

McCulloh (1987) determined $\mathcal{R}(O_{\mathcal{K}}[G])$ when G is abelian.

What can we say about O_N as an $O_K[G]$ -module (instead of $\mathbb{Z}[G]$ -module)?

It is locally free of rank 1, and determines a class in the locally free classgroup $Cl(O_K[G])$.

In general, this class is not determined by analytic invariants. Instead, we can ask which classes in $\operatorname{Cl}(O_K[G])$ are obtained as N varies over all tame G-extensions of K. This gives the set of **realisable classes** $\mathcal{R}(O_K[G])$.

McCulloh (1987) determined $\mathcal{R}(O_{\mathcal{K}}[G])$ when G is abelian.

There are similar results for some non-abelian groups G, e.g. for certain metabelian groups $G = (C_p^r) \rtimes C_m$ (with $\zeta_p \in K$); cf. Byott and Sodaïgui (2013).

What can we say about O_N as an $O_K[G]$ -module (instead of $\mathbb{Z}[G]$ -module)?

It is locally free of rank 1, and determines a class in the locally free classgroup $Cl(O_K[G])$.

In general, this class is not determined by analytic invariants. Instead, we can ask which classes in $\operatorname{Cl}(O_K[G])$ are obtained as N varies over all tame G-extensions of K. This gives the set of **realisable classes** $\mathcal{R}(O_K[G])$.

McCulloh (1987) determined $\mathcal{R}(O_{\mathcal{K}}[G])$ when G is abelian.

There are similar results for some non-abelian groups G, e.g. for certain metabelian groups $G = (C_p^r) \rtimes C_m$ (with $\zeta_p \in K$); cf. Byott and Sodaïgui (2013).

It is expected that $\mathcal{R}(O_{\mathcal{K}}[G])$ is always a subgroup of $O_{\mathcal{K}}[G]$.

What can we say about O_N as an $O_K[G]$ -module (instead of $\mathbb{Z}[G]$ -module)?

It is locally free of rank 1, and determines a class in the locally free classgroup $Cl(O_K[G])$.

In general, this class is not determined by analytic invariants. Instead, we can ask which classes in $\operatorname{Cl}(O_K[G])$ are obtained as N varies over all tame G-extensions of K. This gives the set of **realisable classes** $\mathcal{R}(O_K[G])$.

McCulloh (1987) determined $\mathcal{R}(O_{\mathcal{K}}[G])$ when G is abelian.

There are similar results for some non-abelian groups G, e.g. for certain metabelian groups $G = (C_p^r) \rtimes C_m$ (with $\zeta_p \in K$); cf. Byott and Sodaïgui (2013).

It is expected that $\mathcal{R}(O_{\mathcal{K}}[G])$ is always a subgroup of $O_{\mathcal{K}}[G]$.

In general, we do not even know it is non-empty.

If N/K is a wild Galois extension and $G = \operatorname{Gal}(N/K)$, then O_N cannot be even locally free over $O_K[G]$.

If N/K is a wild Galois extension and $G = \operatorname{Gal}(N/K)$, then O_N cannot be even locally free over $O_K[G]$.

We can ask if O_N is locally free over its associated order

$$\mathcal{A}_{N/K} = \{\lambda \in K[G] : \lambda \cdot O_N \subseteq O_N\}.$$

If N/K is a wild Galois extension and $G = \operatorname{Gal}(N/K)$, then O_N cannot be even locally free over $O_K[G]$.

We can ask if O_N is locally free over its associated order

$$\mathcal{A}_{N/K} = \{\lambda \in K[G] : \lambda \cdot O_N \subseteq O_N\}.$$

This is a "local" question (i.e. it depends on one prime p at a time), so we can localise (and complete) at p and work in a p-adic setting.

If N/K is a wild Galois extension and $G = \operatorname{Gal}(N/K)$, then O_N cannot be even locally free over $O_K[G]$.

We can ask if O_N is locally free over its associated order

$$\mathcal{A}_{N/K} = \{\lambda \in K[G] : \lambda \cdot O_N \subseteq O_N\}.$$

This is a "local" question (i.e. it depends on one prime p at a time), so we can localise (and complete) at p and work in a p-adic setting.

Changing notation, let K be a finite extension of \mathbb{Q}_p , with ring of integers O_K , and let N/K be a Galois extension with Galois group G.

If N/K is a wild Galois extension and $G = \operatorname{Gal}(N/K)$, then O_N cannot be even locally free over $O_K[G]$.

We can ask if O_N is locally free over its associated order

$$\mathcal{A}_{N/K} = \{\lambda \in K[G] : \lambda \cdot O_N \subseteq O_N\}.$$

This is a "local" question (i.e. it depends on one prime p at a time), so we can localise (and complete) at p and work in a p-adic setting.

Changing notation, let K be a finite extension of \mathbb{Q}_p , with ring of integers O_K , and let N/K be a Galois extension with Galois group G.

We just consider the simplest interesting case: $G \cong C_p$.

Let π_K be a generator for this ideal. (If $K = \mathbb{Q}_p$ we can choose $\pi_K = p$).

Let π_K be a generator for this ideal. (If $K = \mathbb{Q}_p$ we can choose $\pi_K = p$). If $x \in K \setminus \{0\}$, we can write $x = u\pi_K^m$ for some unit $u \in O_K^{\times}$ and some $m \in \mathbb{Z}$.

Let π_K be a generator for this ideal. (If $K = \mathbb{Q}_p$ we can choose $\pi_K = p$). If $x \in K \setminus \{0\}$, we can write $x = u\pi_K^m$ for some unit $u \in O_K^{\times}$ and some $m \in \mathbb{Z}$.

We have $x \in O_K \Leftrightarrow m \ge 0$.

Let π_K be a generator for this ideal. (If $K = \mathbb{Q}_p$ we can choose $\pi_K = p$). If $x \in K \setminus \{0\}$, we can write $x = u\pi_K^m$ for some unit $u \in O_K^{\times}$ and some $m \in \mathbb{Z}$.

We have $x \in O_K \Leftrightarrow m \ge 0$.

We define the valuation $v_{\mathcal{K}}: \mathcal{K} \to \mathbb{Z} \cup \{\infty\}$ by

$$v_{\mathcal{K}}(x) = egin{cases} m & ext{if } x
eq 0; \ \infty & ext{if } x = 0. \end{cases}$$

Let π_K be a generator for this ideal. (If $K = \mathbb{Q}_p$ we can choose $\pi_K = p$). If $x \in K \setminus \{0\}$, we can write $x = u\pi_K^m$ for some unit $u \in O_K^{\times}$ and some $m \in \mathbb{Z}$.

We have $x \in O_K \Leftrightarrow m \ge 0$.

We define the valuation $v_{\mathcal{K}}: \mathcal{K} \to \mathbb{Z} \cup \{\infty\}$ by

$$v_{\mathcal{K}}(x) = egin{cases} m & ext{if } x
eq 0; \ \infty & ext{if } x = 0. \end{cases}$$

Similarly, O_N has a unique maximal ideal $\pi_N O_N$, and we have a valuation $v_N : N \twoheadrightarrow \mathbb{Z} \cup \{\infty\}$.

If $v_N(\pi_K) = 1$ then N/K is **unramified**. Then it is tame and O_N is free over $\mathcal{A}(N/K) = O_K[G]$.

If $v_N(\pi_K) = 1$ then N/K is **unramified**. Then it is tame and O_N is free over $\mathcal{A}(N/K) = O_K[G]$.

If $v_N(\pi_K) = p$ then N/K is totally ramified and $\mathcal{A}(N/K) \supseteq \mathcal{O}_K[G]$.

If $v_N(\pi_K) = 1$ then N/K is **unramified**. Then it is tame and O_N is free over $\mathcal{A}(N/K) = O_K[G]$.

If $v_N(\pi_K) = p$ then N/K is totally ramified and $\mathcal{A}(N/K) \supseteq \mathcal{O}_K[G]$.

Let $G = \langle \sigma \rangle \cong C_{\rho}$, and let

$$b = v_N((\sigma - 1) \cdot \pi_N) - 1 \in \mathbb{Z}_{>0}.$$

If $v_N(\pi_K) = 1$ then N/K is **unramified**. Then it is tame and O_N is free over $\mathcal{A}(N/K) = O_K[G]$.

If $v_N(\pi_K) = p$ then N/K is **totally ramified** and $\mathcal{A}(N/K) \supseteq \mathcal{O}_K[G]$.

Let $G = \langle \sigma \rangle \cong C_{\rho}$, and let

$$b = v_N((\sigma - 1) \cdot \pi_N) - 1 \in \mathbb{Z}_{>0}.$$

Then, for all $x \in N \setminus \{0\}$,

$$v_N((\sigma-1)\cdot x) \quad \begin{cases} = v_N(x) + b & \text{if } p \nmid v_N(x), \\ > v_N(x) + b & \text{if } p \mid v_N(x). \end{cases}$$

If $v_N(\pi_K) = 1$ then N/K is **unramified**. Then it is tame and O_N is free over $\mathcal{A}(N/K) = O_K[G]$.

If $v_N(\pi_K) = p$ then N/K is **totally ramified** and $\mathcal{A}(N/K) \supseteq \mathcal{O}_K[G]$.

Let $G = \langle \sigma \rangle \cong C_p$, and let

$$b = v_N((\sigma - 1) \cdot \pi_N) - 1 \in \mathbb{Z}_{>0}.$$

Then, for all $x \in N \setminus \{0\}$,

$$v_N((\sigma-1)\cdot x) \quad \begin{cases} = v_N(x) + b & \text{if } p \nmid v_N(x), \\ > v_N(x) + b & \text{if } p \mid v_N(x). \end{cases}$$

b is called the **ramification break** of N/K.

If $v_N(\pi_K) = 1$ then N/K is **unramified**. Then it is tame and O_N is free over $\mathcal{A}(N/K) = O_K[G]$.

If $v_N(\pi_K) = p$ then N/K is **totally ramified** and $\mathcal{A}(N/K) \supseteq O_K[G]$.

Let $G = \langle \sigma \rangle \cong C_p$, and let

$$b = v_N((\sigma - 1) \cdot \pi_N) - 1 \in \mathbb{Z}_{>0}.$$

Then, for all $x \in N \setminus \{0\}$,

$$v_N((\sigma-1)\cdot x) \quad \begin{cases} = v_N(x) + b & \text{if } p \nmid v_N(x), \\ > v_N(x) + b & \text{if } p \mid v_N(x). \end{cases}$$

b is called the **ramification break** of N/K.

It turns out that the possible values for b are:

$$1 \leq b \leq rac{ep}{p-1}$$
 where $e = v_{\mathbb{Q}_p}(\pi_K)$,
 $p \nmid b$ unless $b = ep/(p-1)$.
$$b < rac{ep}{p-1} - 1.$$

$$b < rac{ep}{p-1} - 1.$$

Then O_N has O_K -basis 1, π_N , π_N^2 , ..., π_N^{p-1} .

$$b < rac{ep}{p-1} - 1$$

Then O_N has O_K -basis 1, π_N , π_N^2 , ..., π_N^{p-1} . Also, K[G] has a K-basis 1, $\sigma - 1$, $(\sigma - 1)^2$, ..., $(\sigma - 1)^{p-1}$.

$$b<\frac{ep}{p-1}-1.$$

Then O_N has O_K -basis 1, π_N , π_N^2 , ..., π_N^{p-1} . Also, K[G] has a K-basis 1, $\sigma - 1$, $(\sigma - 1)^2$, ..., $(\sigma - 1)^{p-1}$. For $0 \le j \le p - 1$, let $r(j) \in \mathbb{Z}$ be as large as possible with

$$\pi_{K}^{-r(j)}(\sigma-1)^{j} \in \mathcal{A}(N/K).$$

$$b < rac{ep}{p-1} - 1$$

Then O_N has O_K -basis 1, π_N , π_N^2 , ..., π_N^{p-1} . Also, K[G] has a K-basis 1, $\sigma - 1$, $(\sigma - 1)^2$, ..., $(\sigma - 1)^{p-1}$. For $0 \le j \le p - 1$, let $r(j) \in \mathbb{Z}$ be as large as possible with

$$\pi_{\mathsf{K}}^{-r(j)}(\sigma-1)^{j} \in \mathcal{A}(\mathsf{N}/\mathsf{K}).$$

This means

$$\frac{(\sigma-1)^{j}}{\pi_{\mathcal{K}}^{r(j)}} \cdot \pi_{\mathcal{N}}^{i} \in O_{\mathcal{N}} \text{ for } 0 \leq i \leq p-1,$$

$$b<\frac{ep}{p-1}-1.$$

Then O_N has O_K -basis 1, π_N , π_N^2 , ..., π_N^{p-1} . Also, K[G] has a K-basis 1, $\sigma - 1$, $(\sigma - 1)^2$, ..., $(\sigma - 1)^{p-1}$. For $0 \le j \le p - 1$, let $r(j) \in \mathbb{Z}$ be as large as possible with

$$\pi_{\mathsf{K}}^{-\mathsf{r}(j)}(\sigma-1)^{j} \in \mathcal{A}(\mathsf{N}/\mathsf{K}).$$

This means

$$\frac{(\sigma-1)^{j}}{\pi_{\mathcal{K}}^{r(j)}} \cdot \pi_{\mathcal{N}}^{i} \in O_{\mathcal{N}} \text{ for } 0 \leq i \leq p-1,$$

so that

$$-pr+bj+i \geq 0$$
 if $i \equiv 0, b, 2b, \ldots, (p-1-j)b \pmod{p}$.

Using this we can show that $\mathcal{A}(N/K)$ has a basis of the form

$$\pi_{\mathcal{K}}^{-r(j)}(\sigma-1)^{j}\in\mathcal{A}({\mathsf{N}}/{\mathsf{K}})$$
 for $0\leq j\leq {\mathsf{p}}-1,$

where the r(j) can be calculated, and we can check when O_N is free over $\mathcal{A}(N/K)$.

Theorem (Bertrandias and Ferton, 1972)

Let $b = pb_1 + b_0$ with $1 \le b_0 \le p - 1$. Then

 O_N is free over $\mathcal{A}(N/K) \Leftrightarrow b_0$ divides p-1.

What happens for degree p^2 (or higher)? Now suppose $Gal(N/K) = \langle \sigma, \tau \rangle \cong C_P \times C_p$ with N/K totally ramified.

$$\begin{array}{lll} v_N((\sigma-1)\cdot x) &=& v_N(x)+b_1 \text{ if } p \nmid v_N(x), \\ v_N((\tau-1)\cdot x) &=& v_N(x)+b_2 \text{ if } p \nmid v_N(x), \end{array}$$

(and with "=" replaced by ">" when $p \mid v_N(x)$).

$$\begin{array}{rcl} v_{\mathcal{N}}((\sigma-1)\cdot x) &=& v_{\mathcal{N}}(x)+b_1 \text{ if } p \nmid v_{\mathcal{N}}(x), \\ v_{\mathcal{N}}((\tau-1)\cdot x) &=& v_{\mathcal{N}}(x)+b_2 \text{ if } p \nmid v_{\mathcal{N}}(x), \end{array}$$

(and with "=" replaced by ">" when $p | v_N(x)$).

This does not give us enough information to find $\mathcal{A}(N/K)$.

$$\begin{array}{rcl} v_N((\sigma-1)\cdot x) &=& v_N(x)+b_1 \text{ if } p \nmid v_N(x), \\ v_N((\tau-1)\cdot x) &=& v_N(x)+b_2 \text{ if } p \nmid v_N(x), \end{array}$$

(and with "=" replaced by ">" when $p | v_N(x)$).

This does not give us enough information to find $\mathcal{A}(N/K)$.

What we really need in order to generalise the calculations for the degree p case is two elements Ψ_1 , $\Psi_2 \in K[G]$ with the following property:

$$\begin{array}{rcl} v_N((\sigma-1)\cdot x) &=& v_N(x)+b_1 \text{ if } p \nmid v_N(x), \\ v_N((\tau-1)\cdot x) &=& v_N(x)+b_2 \text{ if } p \nmid v_N(x), \end{array}$$

(and with "=" replaced by ">" when $p \mid v_N(x)$).

This does not give us enough information to find $\mathcal{A}(N/K)$.

What we really need in order to generalise the calculations for the degree p case is two elements Ψ_1 , $\Psi_2 \in K[G]$ with the following property:

If
$$v_N(x) \equiv -a_0b_2 - pa_1b_1 \pmod{p^2}$$
, with $0 \le a_0, a_1 \le p - 1$, then
 $v_N(\Psi_1 \cdot x) = v_N(x) + b_2$ if $a_0 \ne 0$,
 $v_N(\Psi_2 \cdot x) = v_N(x) + pb_1$ if $a_1 \ne 0$.

Sometimes (but not always), it is possible to construct suitable Ψ_1 , Ψ_2 .

$$\begin{array}{rcl} v_N((\sigma-1)\cdot x) &=& v_N(x)+b_1 \text{ if } p \nmid v_N(x), \\ v_N((\tau-1)\cdot x) &=& v_N(x)+b_2 \text{ if } p \nmid v_N(x), \end{array}$$

(and with "=" replaced by ">" when $p | v_N(x)$).

This does not give us enough information to find $\mathcal{A}(N/K)$.

What we really need in order to generalise the calculations for the degree p case is two elements Ψ_1 , $\Psi_2 \in K[G]$ with the following property:

If $v_N(x) \equiv -a_0b_2 - pa_1b_1 \pmod{p^2}$, with $0 \le a_0, a_1 \le p - 1$, then $v_N(\Psi_1 \cdot x) = v_N(x) + b_2$ if $a_0 \ne 0$, $v_N(\Psi_2 \cdot x) = v_N(x) + pb_1$ if $a_1 \ne 0$.

Sometimes (but not always), it is possible to construct suitable Ψ_1 , Ψ_2 . This is the starting point for the theory of **Galois Scaffolds**.

Nigel Byott (University of Exeter)

Galois Module Structure