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Galois Theory: A Quick Summary
An extension N/K of fields of (finite) degree n = [N : K ] is Galois if it is
normal and separable.

Its Galois group is

Gal(N/K ) := {field automorphisms σ : N → N with σ(k) = k ∀k ∈ K}.

Then Gal(N/K ) is a group of order n.

The Fundamental Theorem of Galois Theory says there is a bijection
between subgroups of Gal(N/K ) and fields E with K ⊆ E ⊆ N.

The Nomal Basis Theorem says there is an element α ∈ N (called a
normal basis generaor) such that

{σ(α) : σ ∈ Gal(N/K )}

is a basis for N as a K -vector space.
Thus every β ∈ N can be written in a unique way as

β =
∑
σ

cσσ(α), cσ ∈ K .
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Reinterpreting the Normal Basis Theorem
Write G = Gal(N/K ) and let

K [G ] =

{∑
σ∈G

cσσ : cσ ∈ K

}
,

a K -vector space over K of dimension n.

Then K [G ] is a ring with multiplication(∑
σ

cσσ

)(∑
τ

dττ

)
=
∑
σ,τ

cσdτστ =
∑
ρ

(∑
σ

cσdσ−1ρ

)
ρ.

We call K [G ] the group algebra of G over K .

Then K [G ] acts on N; for β ∈ N we have(∑
σ

cσσ

)
· β =

∑
σ

cσσ(β) ∈ N.

Thus N becomes a module over the ring K [G ].
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Now if α ∈ N is a normal basis generator for N/K , then, for each β ∈ N,
there is a unique λ ∈ K [G ] with β = λ · α.

This means that N is a free K [G ]-module of rank 1.

[Note that, unlike vector spaces over a field, modules over a ring do not
always have a basis, i.e. are not always free. Thus the Normal Basis
Theorem gives non-trivial information about the structure of N as a
K [G ]-module.]

The main question of Galois module structure is:

Can we find an analogue of the Normal Basis Theorem at the level
of integers?
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Rings of algebraic integers

Let’s take K = Q. Inside Q we have the ring of integers Z.

Let N is a finite extension of Q (i.e. a number field) with [N : Q] = n.

We have an analogue of Z inside N:

ON = {α ∈ N : α is the root of some monic f (X ) ∈ Z[X ]}.

ON is a ring, it contains Z, and it has a basis over Z of size n.

We call ON the ring of algebraic integers of N.
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Example: Quadratic Fields

Let N = Q(
√
d) with d a squarefree integer.

Any element α = u + v
√
d of N with u, v ∈ Z will be an algebraic integer:

it is a root of(
X − (u + v

√
d)
)(

X − (u − v
√
d)
)

= X 2 − 2uX + (u2 + v2d) ∈ Z[X ].

However, these might not be all the algebraic integers:

α = 1
2(1 +

√
d) is a root of(

X − 1

2
(1 +

√
d)

)(
X − 1

2
(1−

√
d)

)
= X 2 − X +

1

4
(1− d)

so
α ∈ ON ⇔ d ≡ 1 (mod 4).
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Theorem

Let d be a squarefree integer and N = Q(
√
d). Then

ON =

{
Z[
√
d ] = {u + v

√
d : u, v ∈ Z} if d ≡ 2, 3 (mod 4);

Z
[
1+
√
d

2

]
=
{
u + v

(
1+
√
d

2

)
: u, v ∈ Z

}
if d ≡ 1 (mod 4).

Notice that TrN/Q(ON) =

{
2Z if d ≡ 2, 3 (mod 4),

Z if d ≡ 1 (mod 4).

Example (Cyclotomic Fields)

Let N = Q(ζm) with ζm = e2πi/m, a primitive nth root of unity. Then
ON = Z[ζm].

We can now ask the question:

If N/Q is a Galois extension, does it have a normal integral basis,
i.e. does there exist α ∈ ON such that each β ∈ ON can be written
uniquely as β = λ · α for some λ in the integral group ring Z[G ]?
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Example (Quadratic Fields)

If N = Q(
√
d) with d ≡ 1 (mod 4), the answer is Yes.

Take α = 1
2(1 +

√
d). Here G = {id, σ} with σ(

√
d) = −

√
d .

∀a, b ∈ Z : a + b

(
1 +
√
d

2

)
= (a + b + aσ) ·

(
1 +
√
d

2

)
.

However, if d ≡ 2, 3 (mod 4), the answer is No.

If we have α with Z[G ] · α = ON , then

(1 + σ) · α = TrN/Q(α) = ±1,

but we have seen that TrN/Q(ON) = 2Z.

Example (Cyclotomic fields with prime conductor)

If N = Q(ζp) with p prime, then G = {σ1, σ2, . . . , σp−1} ∼= F×p , where
σa(ζp) = ζap , and we have ON = Z[G ] · ζp.
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√
d). Here G = {id, σ} with σ(

√
d) = −

√
d .

∀a, b ∈ Z : a + b

(
1 +
√
d

2

)
= (a + b + aσ) ·

(
1 +
√
d

2

)
.

However, if d ≡ 2, 3 (mod 4), the answer is No.

If we have α with Z[G ] · α = ON , then

(1 + σ) · α = TrN/Q(α) = ±1,

but we have seen that TrN/Q(ON) = 2Z.

Example (Cyclotomic fields with prime conductor)

If N = Q(ζp) with p prime, then G = {σ1, σ2, . . . , σp−1} ∼= F×p , where
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Tame and wild extensions

We call an extension N/K of number fields tame if TrN/K (ON) = OK ;
otherwise it is wild.

As in our quadratic example, if N/K is a wild Galois extension then there
cannot be a normal integral basis for N/K .

So the tame/wild distinction is fundamental for Galois module structure.

The first general result of integral Galois module structure was:

Theorem (Hilbert 1897; Speiser 1916)

If N is a tame Galois extension of Q whose Galois group is abelian, then
N/Q does have a normal integral basis.

The key idea is that N ⊆ Q(ζm) for some squarefree m.
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Wild abelian extensions of Q
If N/Q is a wild abelian extension, then ON cannot be a free
Z[G ]-module.

But we could try replacing Z[G ] with a bigger ring.

The associated order of ON is

A(N/Q) = {λ ∈ Q[G ] : λ · ON ⊆ ON}.

Then A(N/Q) is a subring of Q[G ] containing Z[G ], and ON is an
A(N/Q)-module.
Also

A(N/Q) = Z[G ]⇔ N/Q is tame.

Theorem (Leopoldt, 1959)

If N is a wild Galois extension of Q whose Galois group is abelian, then
ON is a free module over A(N/Q).

The key idea is that N ⊆ Q(ζm) for some m.
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Example (Wild quadratic extensions)

If N = Q(
√
d) with d ≡ 2, 3 (mod 4) then

A(N/Q) = Z ·
(

1 + σ

2

)
+ Z ·

(
1− σ

2

)
.

This is the maximal order in Q[C2]. We have

ON = A(N/Q) · (1 +
√
d).

The Hilbert-Speiser Theorem and Leopoldt’s Theorem mean we have a
good understanding of Galois module structure for abelian extensions of
Q.

We would like to generalise in two directions:

non-abelian Galois groups;

base fields K ⊃ Q;

(both for tame and wild extensions).
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A tame non-abelian case

For tame Galois extensions N/Q with Gal(N/Q) ∼= Q8 (the quaternion
group of order 8), calculations of Martinet (1971) showed that there is a
normal integral basis in some cases, but not in others.

So being tame does not guarantee the existence of a normal integral basis.

Question: What determines which tame Q8-extensions do have a normal
integral basis?
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Digression: irreducible characters and L-functions

Attached to a finite group G are certain functions χ : G → C called
irreducible characters. Some of these may be symplectic.

There are no irreducible symplectic characters if G is abelian or |G | is odd.

The group Q8 has just one irreducible symplectic character.

If N/K is a Galois extension of number fields with Galois group G , then
for each irreducible character χ of G there is a complex function
L(s,N/K , χ) called the Artin L-function.
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The simplest possible example is when N = K = Q, so G = {e}, with
just one irreducible character, χ0.

Then

L(s,Q/Q, χ0) =
∑
n≥1

1

ns
=

∏
p prime

1

1− p−s
,

where ns = es log(n) for s ∈ C.

This is the famous Riemann Zeta Function ζ(s).

The series (and the product) converge for Re(s) > 1.

However, ζ(s) is defined for all s ∈ C (except for a pole at s = 1) by
analytic continuation, and it has a functional equation relating ζ(s) to
ζ(1− s).

In general, each Artin L-function L(s,N/K , χ) is a meromorphic function
on the whole of C, and has a functional equation.

The functional equation for L(s,N/K , χ) involves a number W (N/K , χ)
called the root number.

If χ is an irreducible symplectic character then W (N/K , χ) = ±1.
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Back to quaternion extensions:

Theorem (Conjectured Serre 1971; proved Fröhlich, 1972)

Let N/Q be a tame Galois extension with Galois group Q8, and let χ be
the irreducible symplectic character of Q8. Then

ON is free over Z[Q8]⇔W (N/Q, χ) = +1.

This shows an unexpected connection between algebraic information
(whether N has a normal integral basis) and anayltic information (root
numbers of L-functions).

To fit this into a general theory, we need to understand the significance of
tameness.
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Locally free Z[G ]-modules

For each prime number p, we define the localisation of Z at p:

Z(p) =
{a
b

: a, b ∈ Z, p - b
}
.

Then Z(p) is a local ring, i.e. a ring with only one maximal ideal, namely
pZ(p). The field of fractions of Z(p) is Q.

The only prime number in Z which “survives” in Z(p) is p itself; all other
primes become units in Z(p).

(We could also take completions and work with the p-adic integers Zp

instead of Z(p). The field of fractions of Zp is the the field Qp of p-adic
numbers.)
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For a Galois extension N/Q with Gal(N/Q) = G , we know that ON is a
Z[G ]-module. We can extend scalars from Z to Z(p), so that ON,(p) is a
Z(p)[G ]-module.

Then

L/Q is tame⇔ ON,(p) is a free Z(p)[G ]-module for each prime p.

We then say ON is a locally free Z[G ]-module.

So N/Q has a normal integral basis if and only if the locally free
Z[G ]-module ON is free.

Fröhlich constructed a finite abelian group Cl(Z[G ]) which classifies
locally free Z[G ]-modules (up to stable isomorphism).

We now consider tame Galois extensions N/K (with base field K ⊇ Q),
and consider ON as a locally free Z[G ]-module of rank [K : Q].
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The main theorem of tame Galois module structure

Theorem (Taylor, 1981)

For a tame Galois extension N/K of number fields, the class of ON in
Cl(Z[G ]) is determined by the W (N/K , χ) for the irreducible symplectic
characters χ of G . In particular, if G has no such characters, then ON is a
free Z[G ]-module.
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Relative tame Galois Module Structure:

What can we say about ON as an OK [G ]-module (instead of
Z[G ]-module)?

It is locally free of rank 1, and determines a class in the locally free
classgroup Cl(OK [G ]).

In general, this class is not determined by analytic invariants. Instead, we
can ask which classes in Cl(OK [G ]) are obtained as N varies over all tame
G -extensions of K . This gives the set of realisable classes R(OK [G ]).

McCulloh (1987) determined R(OK [G ]) when G is abelian.

There are similar results for some non-abelian groups G , e.g. for certain
metabelian groups G = (C r

p) o Cm (with ζp ∈ K ); cf. Byott and Sodäıgui
(2013).

It is expected that R(OK [G ]) is always a subgroup of OK [G ].

In general, we do not even know it is non-empty.
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(2013).

It is expected that R(OK [G ]) is always a subgroup of OK [G ].

In general, we do not even know it is non-empty.

Nigel Byott (University of Exeter) Galois Module Structure Omaha, May 2019 19 / 25



Relative tame Galois Module Structure:

What can we say about ON as an OK [G ]-module (instead of
Z[G ]-module)?

It is locally free of rank 1, and determines a class in the locally free
classgroup Cl(OK [G ]).

In general, this class is not determined by analytic invariants. Instead, we
can ask which classes in Cl(OK [G ]) are obtained as N varies over all tame
G -extensions of K . This gives the set of realisable classes R(OK [G ]).

McCulloh (1987) determined R(OK [G ]) when G is abelian.

There are similar results for some non-abelian groups G , e.g. for certain
metabelian groups G = (C r

p) o Cm (with ζp ∈ K ); cf. Byott and Sodäıgui
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Wild extensions

If N/K is a wild Galois extension and G = Gal(N/K ), then ON cannot be
even locally free over OK [G ].

We can ask if ON is locally free over its associated order

AN/K = {λ ∈ K [G ] : λ · ON ⊆ ON}.

This is a “local” question (i.e. it depends on one prime p at a time), so we
can localise (and complete) at p and work in a p-adic setting.

Changing notation, let K be a finite extension of Qp, with ring of integers
OK , and let N/K be a Galois extension with Galois group G .

We just consider the simplest interesting case: G ∼= Cp.
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OK is a Principal Ideal Domain with a unique maximal ideal.

Let πK be a generator for this ideal. (If K = Qp we can choose πK = p).

If x ∈ K\{0}, we can write x = uπmK for some unit u ∈ O×K and some
m ∈ Z.

We have x ∈ OK ⇔ m ≥ 0.

We define the valuation vK : K → Z ∪ {∞} by

vK (x) =

{
m if x 6= 0;

∞ if x = 0.

Similarly, ON has a unique maximal ideal πNON , and we have a valuation
vN : N � Z ∪ {∞}.
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There are two possibilities for our degree p extension N/K : either
vN(πK ) = 1 or vN(πK ) = p.

If vN(πK ) = 1 then N/K is unramified. Then it is tame and ON is free
over A(N/K ) = OK [G ].

If vN(πK ) = p then N/K is totally ramified and A(N/K ) ) OK [G ].

Let G = 〈σ〉 ∼= Cp, and let

b = vN((σ − 1) · πN)− 1 ∈ Z>0.

Then, for all x ∈ N\{0},

vN((σ − 1) · x)

{
= vN(x) + b if p - vN(x),

> vN(x) + b if p | vN(x).

b is called the ramification break of N/K .

It turns out that the possible values for b are:

1 ≤ b ≤ ep

p − 1
where e = vQp(πK ),

p - b unless b = ep/(p − 1).

Nigel Byott (University of Exeter) Galois Module Structure Omaha, May 2019 22 / 25



There are two possibilities for our degree p extension N/K : either
vN(πK ) = 1 or vN(πK ) = p.

If vN(πK ) = 1 then N/K is unramified. Then it is tame and ON is free
over A(N/K ) = OK [G ].

If vN(πK ) = p then N/K is totally ramified and A(N/K ) ) OK [G ].

Let G = 〈σ〉 ∼= Cp, and let

b = vN((σ − 1) · πN)− 1 ∈ Z>0.

Then, for all x ∈ N\{0},

vN((σ − 1) · x)

{
= vN(x) + b if p - vN(x),

> vN(x) + b if p | vN(x).

b is called the ramification break of N/K .

It turns out that the possible values for b are:

1 ≤ b ≤ ep

p − 1
where e = vQp(πK ),

p - b unless b = ep/(p − 1).

Nigel Byott (University of Exeter) Galois Module Structure Omaha, May 2019 22 / 25



There are two possibilities for our degree p extension N/K : either
vN(πK ) = 1 or vN(πK ) = p.

If vN(πK ) = 1 then N/K is unramified. Then it is tame and ON is free
over A(N/K ) = OK [G ].

If vN(πK ) = p then N/K is totally ramified and A(N/K ) ) OK [G ].

Let G = 〈σ〉 ∼= Cp, and let

b = vN((σ − 1) · πN)− 1 ∈ Z>0.

Then, for all x ∈ N\{0},

vN((σ − 1) · x)

{
= vN(x) + b if p - vN(x),

> vN(x) + b if p | vN(x).

b is called the ramification break of N/K .

It turns out that the possible values for b are:

1 ≤ b ≤ ep

p − 1
where e = vQp(πK ),

p - b unless b = ep/(p − 1).

Nigel Byott (University of Exeter) Galois Module Structure Omaha, May 2019 22 / 25



There are two possibilities for our degree p extension N/K : either
vN(πK ) = 1 or vN(πK ) = p.

If vN(πK ) = 1 then N/K is unramified. Then it is tame and ON is free
over A(N/K ) = OK [G ].

If vN(πK ) = p then N/K is totally ramified and A(N/K ) ) OK [G ].

Let G = 〈σ〉 ∼= Cp, and let

b = vN((σ − 1) · πN)− 1 ∈ Z>0.

Then, for all x ∈ N\{0},

vN((σ − 1) · x)

{
= vN(x) + b if p - vN(x),

> vN(x) + b if p | vN(x).

b is called the ramification break of N/K .

It turns out that the possible values for b are:

1 ≤ b ≤ ep

p − 1
where e = vQp(πK ),

p - b unless b = ep/(p − 1).

Nigel Byott (University of Exeter) Galois Module Structure Omaha, May 2019 22 / 25



There are two possibilities for our degree p extension N/K : either
vN(πK ) = 1 or vN(πK ) = p.

If vN(πK ) = 1 then N/K is unramified. Then it is tame and ON is free
over A(N/K ) = OK [G ].

If vN(πK ) = p then N/K is totally ramified and A(N/K ) ) OK [G ].

Let G = 〈σ〉 ∼= Cp, and let

b = vN((σ − 1) · πN)− 1 ∈ Z>0.

Then, for all x ∈ N\{0},

vN((σ − 1) · x)

{
= vN(x) + b if p - vN(x),

> vN(x) + b if p | vN(x).

b is called the ramification break of N/K .

It turns out that the possible values for b are:

1 ≤ b ≤ ep

p − 1
where e = vQp(πK ),

p - b unless b = ep/(p − 1).

Nigel Byott (University of Exeter) Galois Module Structure Omaha, May 2019 22 / 25



There are two possibilities for our degree p extension N/K : either
vN(πK ) = 1 or vN(πK ) = p.

If vN(πK ) = 1 then N/K is unramified. Then it is tame and ON is free
over A(N/K ) = OK [G ].

If vN(πK ) = p then N/K is totally ramified and A(N/K ) ) OK [G ].

Let G = 〈σ〉 ∼= Cp, and let

b = vN((σ − 1) · πN)− 1 ∈ Z>0.

Then, for all x ∈ N\{0},

vN((σ − 1) · x)

{
= vN(x) + b if p - vN(x),

> vN(x) + b if p | vN(x).

b is called the ramification break of N/K .

It turns out that the possible values for b are:

1 ≤ b ≤ ep

p − 1
where e = vQp(πK ),

p - b unless b = ep/(p − 1).

Nigel Byott (University of Exeter) Galois Module Structure Omaha, May 2019 22 / 25



There are two possibilities for our degree p extension N/K : either
vN(πK ) = 1 or vN(πK ) = p.

If vN(πK ) = 1 then N/K is unramified. Then it is tame and ON is free
over A(N/K ) = OK [G ].

If vN(πK ) = p then N/K is totally ramified and A(N/K ) ) OK [G ].

Let G = 〈σ〉 ∼= Cp, and let

b = vN((σ − 1) · πN)− 1 ∈ Z>0.

Then, for all x ∈ N\{0},

vN((σ − 1) · x)

{
= vN(x) + b if p - vN(x),

> vN(x) + b if p | vN(x).

b is called the ramification break of N/K .

It turns out that the possible values for b are:

1 ≤ b ≤ ep

p − 1
where e = vQp(πK ),

p - b unless b = ep/(p − 1).

Nigel Byott (University of Exeter) Galois Module Structure Omaha, May 2019 22 / 25



To avoid special cases, assume that b is not too close to its upper bound

b <
ep

p − 1
− 1.

Then ON has OK -basis 1, πN , π2N , . . . , πp−1N .

Also, K [G ] has a K -basis 1, σ − 1, (σ − 1)2, . . . , (σ − 1)p−1.

For 0 ≤ j ≤ p − 1, let r(j) ∈ Z be as large as possible with

π
−r(j)
K (σ − 1)j ∈ A(N/K ).

This means
(σ − 1)j

π
r(j)
K

· πiN ∈ ON for 0 ≤ i ≤ p − 1,

so that

−pr + bj + i ≥ 0 if i ≡ 0, b, 2b, . . . , (p − 1− j)b (mod p).
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Using this we can show that A(N/K ) has a basis of the form

π
−r(j)
K (σ − 1)j ∈ A(N/K ) for 0 ≤ j ≤ p − 1,

where the r(j) can be calculated, and we can check when ON is free over
A(N/K ).

Theorem (Bertrandias and Ferton, 1972)

Let b = pb1 + b0 with 1 ≤ b0 ≤ p − 1. Then

ON is free over A(N/K )⇔ b0 divides p − 1.

Nigel Byott (University of Exeter) Galois Module Structure Omaha, May 2019 24 / 25



What happens for degree p2 (or higher)?
Now suppose Gal(N/K ) = 〈σ, τ〉 ∼= CP × Cp with N/K totally ramified.

We then have two ramification breaks b2 ≥ b1 with

vN((σ − 1) · x) = vN(x) + b1 if p - vN(x),

vN((τ − 1) · x) = vN(x) + b2 if p - vN(x),

(and with “=” replaced by “>” when p | vN(x)).

This does not give us enough information to find A(N/K ).

What we really need in order to generalise the calculations for the degree p
case is two elements Ψ1, Ψ2 ∈ K [G ] with the following property:

If vN(x) ≡ −a0b2 − pa1b1 (mod p2), with 0 ≤ a0, a1 ≤ p − 1, then

vN(Ψ1 · x) = vN(x) + b2 if a0 6= 0,

vN(Ψ2 · x) = vN(x) + pb1 if a1 6= 0.

Sometimes (but not always), it is possible to construct suitable Ψ1, Ψ2.

This is the starting point for the theory of Galois Scaffolds.
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